

Pyroelectric Infrared Radial Sensor

TYPE: SB312

Digital Intelligent Passive Infrared Sensor SB312

SB312 is a new digital intelligent PIR sensor. This Smart digital detector offers a complete motion detector solution, with all electronic circuitry built into the detector housing. Only a power supply and power-switching components need to be added to make the entire motion switch.

Features and Benefits

Digital signal processing (DSP)

Two-way differential high impedance sensor input and temperature compensation

Built-in filter, screen the interference by other frequency Schmidt REL output

Applications

USB Alarms, PIR motion detection, Intruder detection, Occupancy detection, Motion sensor lights, Network camera, Car-security system etc.

Dimension

Technical Data

1. Maximum Ratings

Characteristics	Symbol	Min. Value	Max. Value	Unit	Remarks					
Supply Voltage	VDD	-0.3	3.6	V						
Working Temperature	TST	-20	85	°C						
Current into any pin	Into	-100	100	mA						
Storage Temperature	TST	-40	125	°C						

2. Working Conditions (T=25 °C, Vdd=3V, Except other requirements)										
Characteristics			Min.	Туре	Max.	Unit	Remarks			
Supply Voltage	VDD		2.7	3	3.3	V				
Working Current	IDD		12	15	20	μΑ				
Sensitivity Threshold Value	Vsens			120		μV	Non-adjustable			
Output REL	•									
Output Low Current		IOL	10			mA	VOL<1V			
Output High Current	Output High Current				-10	mA	VOH>(VDD-1V)			
REL Low Level Output Blockade Time		TOL		2.3		s	Non-adjustable			
REL High Level Output Delay Time		ТОН		2.3		s				
Oscillator & Filte	r									
Low pass filter cut-off frequency					7	Hz				
High pass filter cut-off frequency					0.44	Hz				
Oscillator frequency on Chip		FCLK			64	kHz				
Interior Block Diagram			ADC ADC COmp& Alrem Event Logic VDD Logic VTEMP BAND GAP REF PIN ADC PIN ADC							

Typical Application

Notes: This is only reference circuit for PIR Sensor SB312.

Notice:

The typical average transmissivity curve of 5.5µm pass IR filter is figured, which is vacuumed on silicon filter.

View of Field

X-Y sectional view

Directions for Use

- Pay attention to the mounting direction of the sensor's element and the size of element ichnography. Combining with focus of Fresnel lens can achieve a optimal optics design.
- ●The ex-factory parameter of sensor is gained by testing in the condition of standard Black Body and the relevant circuit after one minute steadying-time.
- The detecting distance of sensor is a multidimensional function, consisting of ambient temperature, temperature of moving target, target distance of Fresnel Lens', ambient humidity, amplifier gain and comparison voltage.
- ●The welding shall be made at 4mm above as per the recommendation for lead wire of sensor seat, and the welding should be completed in the shortest possible time.
- •Do not touch the window by hand and the hard things directly.
- Strong shake and static should be avoided.
- ●This products are packed with the environmental protection material ,and the sensors' surface has been covered specially with OHK anti-erode material,100pcs per small package ,3000pcs per large package.